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Numerical approximation of viscous terms in finite volume
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SUMMARY

Two methods for the numerical treatment of viscous terms in shallow water equations are studied and
computational details are given for structured grids. It is demonstrated that the first scheme, which is
widely used, may lead to spurious oscillations arising from computational modes. In fact, the shortest
resolvable waves of wave length 2�x are invisible to this method. The second method, although more
expensive, is free of computational modes and it presents a more accurate approximation of viscous terms.
The dispersion relation of the second method is closer to the analytical case and it has a smaller truncation
error, which is due to the fact that it uses a more localized control volume. Numerical experiments are
also presented that support the study. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many natural systems exhibit shallow water flow where the horizontal scales of flow are much
larger than the vertical scales and the physical properties of the flow have small changes in the
vertical direction compared with the horizontal ones (e.g. [1, 2]). In particular, most flows in rivers,
lakes, seas and oceans are examples of shallow waters. Moreover, the shallow water equations also
arise in certain atmospheric flows such as gravity waves [3].

In the past two decades, significant advances have been made in the numerical modeling of
shallow water flows and many high resolution schemes have been proposed for complex flows. In
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particular, high-order upwind finite volume schemes have become popular for hyperbolic systems
due to their inherent conservation property and their ability to capture sharp gradients with a low-
level of numerical diffusion and oscillations. Upwind finite volume schemes have been successfully
employed for the simulation of some challenging problems for shallow flows such as dam break
flows over dry and irregular topographies (e.g. [4–8]).

Fourier analysis is an approach to study the effect of discretization schemes on the properties of
the continuous system. In this approach, some quantities such as wave amplitude, phase speed and
group velocity are examined and the analytical form of those quantities should be preserved by an
ideal numerical method. This gives us some insight into the properties of the numerical scheme
and some guidelines for a proper selection of numerical parameters such as the CFL number. This
approach is widely used for the study of discrete models corresponding to various equations (e.g.
[9]). In particular, in the case of shallow water equations, Fourier analysis has been extensively
employed for various schemes such as finite difference (e.g. [10–15]), finite element [16–21] and
finite volume methods [22, 23] to examine the performance of numerical methods for various terms
such as gravity and Coriolis terms.

The viscous terms in shallow water equations may become crucial in some complex flow cases
including channel junctions, bend flows, and flows around hydraulic structures such as bridge piers
and groynes and an accurate discretization of those terms is necessary in such cases. However,
some discretization methods of viscous terms may lead to numerical noises as illustrated herein.
In the present study, two commonly used numerical schemes for viscous terms are considered
and a Fourier analysis as well as a detailed analysis of truncation errors and stationary modes are
performed to give an insight into the performance of those schemes.

This paper is organized as follows. In Section 2 the shallow water equations are presented.
Section 3 presents the finite volume method where the computational details for the treatment of
convective terms and two numerical schemes for the diffusive terms are given. In Section 4, a
simplified model equation for the diffusive terms is considered and the two numerical schemes for
diffusive terms are studied using a Fourier analysis approach. Those results are then numerically
verified in Section 5. Some concluding remarks complete the study.

2. THE SHALLOW WATER EQUATIONS

The 2-D SW equations in a conservative form may be written as

�u
�t

+ �E
�x

+ �G
�y

= �Ed

�x
+ �Gd

�y
+S (1)

with

u=
⎡
⎢⎣
h

u

v

⎤
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⎡
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uh

u2h+0.5gh2

uvh
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⎥⎥⎦ (2)
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586 A. MOHAMMADIAN

where h is the water depth, u and v are the velocity components and g is the gravitational
acceleration. The superscript ‘d’ refers to the diffusion and the corresponding flux has the following
form:

Ed=

⎡
⎢⎢⎢⎢⎢⎣

0

�h
�u
�x

�h
�v

�x

⎤
⎥⎥⎥⎥⎥⎦ , Gd=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�h
�u
�y

�h
�v

�y

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where �=�+�t and � and �t are water and eddy viscosity coefficients, respectively. The term S
may include various source terms such as bed roughness, Coriolis and topography. Since this paper
concentrates on the viscous terms, S is assumed to be zero without losing generality.

3. THE FINITE VOLUME METHOD

A finite volume method is considered in this paper where all variables are located at the geometric
centers of the computational cells. Let A be the area of a control volume with boundary s. The
SW equations are integrated over every control volume∫

t

∫
A

(
�u
�x

+ �E
�x

+ �G
�y

− �Ed

�x
− �Gd

�y

)
dAdt=0 (4)

A high-order time-stepping scheme may be employed to integrate (4) in time. However, for the
sake of simplicity and because the spatial discretization of the viscous terms is the main issue in
this paper, we use the first-order forward (explicit) Euler time-stepping scheme here. This leads to∫

A

[
un+1−un

�t
+
(

�E
�x

+ �G
�y

− �Ed

�x
− �Gd

�y

)n]
dA=0 (5)

The application of the divergence theorem to the diffusive and convective flux integrals gives∫
A

(
�E
�x

+ �G
�y

− �Ed

�x
− �Gd

�y

)
dA=

∮
s
(F ·n−Fd ·n)ds (6)

where F=(E,G) and Fd=(Ed,Gd). The boundary integral is approximated by a summation over
the cell interfaces (Figure 1)∮

s
(F ·n−Fd ·n)ds=

4∑
k=1

(Fk ·nk−Fd
k ·nk)dsk (7)

The convective flux F may be calculated by various schemes. Most schemes may be written in a
general form as

F=0.5(FR+FL−�F∗) (8)

where FL=F(uL) and FR=F(uR) are the flux vectors as explained in the following. For the
interfaces along the y-axis, the subscripts .R and .L, respectively, represent the evaluation of the
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Figure 1. The cell (i, j) and its neighbors. Note that (i, j) refers to the cell center, (I, J ) refers to the
cell corner and (i, J ) and (I, j) refer to the midpoint of the interfaces.

right and left sides of the interface, while for the interfaces along the x-axis, they respectively
refer to above and below the interface. In this paper, the flux difference �F∗ is computed based
on Roe’s linearization,

�F∗ =
3∑

k=1
�̃k |ãk |ẽk (9)

where ãk , ẽk and �̃k are, respectively, the eigenvalues and eigenvectors of the approximate Jacobian
J̃ and the coefficients of decomposition of �u=uR−uL on the basis of eigenvectors. The matrix
J̃ satisfies �F= J̃�u with

J̃= �(F ·n)

�u
=

⎛
⎜⎜⎝

0 nx ny

(c̃2− ũ2)nx − ũ ṽny 2ũnx + ṽny ũny

(c̃2− ṽ2)ny− ũ ṽnx ṽnx ũnx +2ṽny

⎞
⎟⎟⎠ (10)

where

ũ= uR
√
hR+uL

√
hL√

hR+√
hL

, ṽ= vR
√
hR+vL

√
hL√

hR+√
hL

, c̃=
√
g(hR+hL)

2
(11)

The eigenvalues of J̃ are simply

ã1= ũnx + ṽny+ c̃, ã2= ũnx + ṽny, ã3= ũnx + ṽny− c̃ (12)
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with the corresponding eigenvectors

ẽ1=
⎛
⎜⎝

1

ũ+ c̃nx

ṽ+ c̃ny

⎞
⎟⎠ , ẽ2=

⎛
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1

−c̃ny

c̃nx

⎞
⎟⎠ , ẽ3=

⎛
⎜⎝

1

ũ− c̃nx

ṽ− c̃ny

⎞
⎟⎠ (13)

respectively. The coefficients of decomposition �̃k , k=1,2,3, are computed as

�̃1= �h

2
+ 1

2c̃
[�(hu)nx +�(hv)ny−(ũnx + ṽny)�h] (14)

�̃2= 1

c̃
([�(hv)− ṽ�h]nx −[�(hu)− ũ�h]ny) (15)

�̃3= �h

2
− 1

2c̃
[�(hu)nx +�(hv)ny−(ũnx + ṽny)�h] (16)

The discretization of the diffusive terms may be performed using two approaches as explained
in the following.

3.1. Method A—centered scheme for the diffusive fluxes

The diffusive fluxes in this method are approximated by a centered scheme,

Fd=0.5(Fd
R+Fd

L) (17)

Thus, Ed is computed as

Ed=0.5
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(18)

and Gd is given by

Gd=0.5

⎡
⎢⎢⎢⎢⎢⎢⎣

0(
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)
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(
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R
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⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

The interest of this approach is that in most cases, the derivatives of the velocity components
are already computed at the cell centers for other purposes, such as turbulence modeling and
therefore the diffusive fluxes are computed easily by a simple averaging at no extra efforts.
Moreover, the general averaging (18) could be performed simultaneously with (8), which improves
the computational efficiency. Note that the calculation of derivatives is straightforward in finite
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volume methods. Indeed, the divergence theorem may be employed to obtain the derivatives of a
general scalar variable � on a general cell (i, j) as (see Figure 1)

(
��

�x

)
i, j

= 1

Ai, j

∫
A

��

�x
dA≈

∑4
k=1�k�yk
Ai, j

(20)

(
��

�y

)
i, j

= 1

Ai, j

∫
A

��

�y
dA≈−

∑4
k=1�k�xk
Ai, j

(21)

where Ai, j is the area of the control volume with vertices (i+1, j), (i, j+1), (i−1, j) and (i, j−1)
and

�x1= xi, j+1−xi+1, j , �1=(�i, j+1+�i+1, j )/2 (22)

�x2= xi−1, j −xi, j+1, �2=(�i−1, j +�i, j+1)/2 (23)

�x3= xi, j−1−xi−1, j , �3=(�i, j−1+�i−1, j )/2 (24)

�x4= xi+1, j −xi, j−1, �4=(�i+1, j +�i, j−1)/2 (25)

and the computation of �yk is similar to �xk . Therefore, the viscous terms in (18) may be computed
as e.g.

(
�h

�u
�x

)
i, j

≈�hi, j

∑4
k=1 uk�yk
Ai, j

(26)

Similarly,

(
�h

�v

�y

)
i, j

≈−�hi, j

∑4
k=1 vk�xk
Ai, j

(27)

3.2. Method B—Computation of the diffusive fluxes directly on the cell interfaces

The derivatives in this method are computed by constructing a local control volume on the cell
face. The local control volume for each cell interface is defined by the center of the right and
left cells and the two end points of the interface (Figure 1). Once the derivatives are obtained at
the cell interfaces, the diffusive fluxes could be directly computed as Fd=Fd

e where subscript .e
represents the values of the variables on the cell interfaces. For example, Ed, is computed as

Ed=

⎡
⎢⎢⎢⎢⎢⎢⎣

0(
�h

�u
�x

)
e(

�h
�v

�x

)
e

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)
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The derivatives at the midpoint of a cell face e.g. (I, j) again could be computed using the
divergence theorem as the method A, but now using the control volume defined by (i, j),
(I, J+1), (i−1, j) and (I, J ), i.e.

�x1 = xI,J+1−xi, j , �1=(�I,J+1+�i, j )/2

�x2 = xi−1, j −xI,J+1, �2=(�i−1, j +�I,J+1)/2

�x3 = xI,J −xi−1, j , �3=(�I,J +�i−1, j )/2

�x4 = xi, j −xI,J , �4=(�i, j +�I,J )/2

(29)

This method seems more expensive at the first glance because the values of variables at the corners
of the cells are not available directly and must be obtained via an interpolation scheme. Such
an interpolation step is not needed for the method A because in that method, only the value of
variables at the center of control volumes is used. Therefore, the method B is computationally
more expensive than the method A. However, in the next section it is shown that the method A
may lead to spurious oscillations.

4. MODEL EQUATION AND FOURIER ANALYSIS

In order to give an insight into the performance of the two numerical schemes given in previous
section, we consider here a two-dimensional diffusion equation in Cartesian coordinate as a model

�c
�t

=�

(
�2c
�x2

+ �2c
�y2

)
(30)

The computation of the derivatives using the divergence theorem for a Cartesian mesh leads to

(
�c
�x

)
i, j

= 0.5[(ci, j+1+ci+1, j )(yi, j+1− yi+1, j )+(ci−1, j +ci, j+1)(yi−1, j − yi, j+1)

+(ci, j−1+ci−1, j )(yi, j−1− yi−1, j )+(ci+1, j +ci, j−1)(yi+1, j − yi, j−1)]/
[(yi, j+1− yi, j−1)(xi+1, j −xi−1, j )] (31)

Thus, for a regular mesh with constant grid spacing �x and �y we obtain

(
�c
�x

)
i, j

= ci+1, j −ci−1, j

2�x
(32)

Similarly

(
�c
�y

)
i, j

= ci, j+1−ci, j−1

2�y
(33)
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Using the method A, the diffusive terms are approximated as

(
�2c
�x2

)
i, j

=
0.5

[(
�c
�x

)
i+1, j

+
(

�c
�x

)
i, j

]
−0.5

[(
�c
�x

)
i, j

+
(

�c
�x

)
i−1, j

]

�x
(34)

and

(
�2c
�y2

)
i, j

=
0.5

[(
�c
�y

)
i, j+1

+
(

�c
�y

)
i, j

]
−0.5

[(
�c
�y

)
i, j

+
(

�c
�y

)
i, j−1

]

�y
(35)

Computing the derivatives using (32) and (33) and substituting in (34), (35) and (30), we obtain
the following equivalent of the method A:

�c
�t

=�

(
ci+2, j −2ci, j +ci−2, j

4�x2
+ ci, j+2−2ci, j +ci, j−2

4�y2

)
(36)

On the other hand, with the method B, the derivatives are computed directly at the cell interfaces as

(
�c
�x

)
I, j

= 0.5[(cI,J+1+ci, j )(yI,J+1− yi, j )+(ci−1, j +cI,J+1)(yi−1, j − yI,J+1)

+(cI,J +ci−1, j )(yI,J − yi−1, j )+(ci, j +cI,J )(yi, j − yI,J )]/
[(yI,J+1− yI,J )(xi, j −xi−1, j )] (37)

which is simplified to (
�c
�x

)
I, j

= ci, j −ci−1, j

�x
(38)

and the diffusive term is approximated as

(
�2c
�x2

)
i, j

=

(
�c
�x

)
I+1, j

−
(

�c
�x

)
I, j

�x
(39)

The term (�2c/�y2)i, j is also computed similarly. Substituting in (30), we obtain the following
equivalent of the method B:

�c
�t

=�

(
ci+1, j −2ci, j +ci−1, j

�x2
+ ci, j+1−2ci, j +ci, j−1

�y2

)
(40)

First, we consider the truncation error of the two discretization approaches (36) and (40). The
method A leads to

�−1 �c
�t

= �2c
�x2

+ �2c
�y2

+ �x2

3

�4c
�x4

+ �y2

3

�4c
�y4

+·· · (41)
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while for the method B we obtain

�−1 �c
�t

= �2c
�x2

+ �2c
�y2

+ �x2

12

�4c
�x4

+ �y2

12

�4c
�y4

+·· · (42)

which means that both methods are second-order accurate, but the method B leads to less truncation
error than the method A. This could be explained by noting that, indeed, in the method B the
resulting control volume for the computation of the diffusive flux is smaller. In other words, the
method B uses a higher resolution than the method A in the same grid, and thus it is more accurate.

We now employ a Fourier analysis to study the solutions of the two discretization methods by
comparing them with that of the continuous equation (30). Periodic solutions of (30) of the form

c= c̃ei(kx+ly−�t) (43)

are sought where c̃ is amplitude, k and l are the wave numbers in x and y directions and � is
the frequency. An equation for frequency is obtained by substituting the periodic solution in (30).
This leads to the dispersion relation

�=−i�(k2+l2) (44)

or

c=Re[c̃ei(kx+ly)−�(k2+l2)t ] (45)

which means that the phase of the solution is constant and only the amplitude is damped in time
and the level of the damping depends on the wave number k. Phase and group velocities are then
found from their respective definitions C :=�r/k and G :=��r/�k to be zero because the real
part of the frequency (�r ) is zero.

Dispersion relationships, phase velocities and group velocities can also be found for numer-
ical methods by requiring nontrivial wave solutions of the discretized version of (30). An ideal
numerical scheme should present similar dispersion relation to that of the continuous model (44).
By substituting periodic solutions of the form c= c̃ei(kx+ly−�t) into (36) and (40), we obtain an
equation for the frequency �. The resulting dispersion relations have the following form for the
two schemes:

−i�−1�A= 2cos(2k�x)−2

4�x2
+ 2cos(2l�y)−2

4�y2
for the method A (46)

−i�−1�B= 2cos(k�x)−2

�x2
+ 2cos(l�y)−2

�y2
for the method B (47)

It is observed that the frequency obtained by both schemes is pure imaginary. Hence the phase
speed and group velocity are zero as for the continuous equation. Expanding the right-hand side
of (46) we obtain

i�−1�A= sin2(k�x)

�x2
+ sin2(l�y)

�y2
(48)

or

�−1�A=−i(k2+l2)+ ik4�x2

3
+ il4�y2

3
+O(�x4,�y4) (49)
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and for the method B we obtain

i�−1�A= 2sin2(k�x/2)

�x2
+ 2sin2(l�y/2)

�y2
(50)

or

�−1�B=−i(k2+l2)+ ik4�x2

12
+ il4�y2

12
+O(�x4,�y4) (51)

That is, the dispersion relations of both discrete equations converge to that of the continuous
equation with a second-order rate as �x , �y→0, but the method B has less deviation from the
continuous case.

We now search for the stationary solutions of the continuous and the two discrete systems. For
the continuous system, setting �=0 in (44) leads to k= l=0 and using (45), we obtain c= c̃.
Therefore, it is observed that the continuous system only admits constant state as a stationary
solution. The stationary solution for discrete system (36) is obtained by setting �A=0 in (46):

cos(2k�x)+cos(2l�y)=2 (52)

or

k�x=n�, n=0,1, . . . (53)

l�y=m�, m=0,1, . . . (54)

Substituting in (43) e.g. for the case m=n=1, we obtain

c(xp, yq)=Re[c̃ei(kxp+lyq+�At)]= c̃cos((p+q)�) (55)

where xp = p�x and yq =q�y. On the other hand, setting �B=0 in (47) leads to

cos(k�x)+cos(l�y)=2 (56)

which is satisfied when

k�x=2n�, n=0,1, . . . (57)

l�y=2m�, m=0,1, . . . (58)

Hence, e.g., for m=n=1 one obtains

c(xp, yq)=Re[c̃ei(kxp+lyq+�Bt)]= c̃cos(2(p+q)�) (59)

A substantial difference is now observed between the solutions (55) and (59) corresponding to the
two discrete systems. While the method B leads to a constant state solution as for the continuous
system, the method A admits an oscillatory solution that could be potentially dangerous for the
numerical simulations. Indeed, the stationary solutions of the system may be added to the unsteady
solutions and still satisfy the system. Therefore, it is expected that the method B should lead to
better results than the method A. A basically similar problem is also well known in the numerical
modeling of the pressure terms in the Navier–Stokes equations where the first-order derivatives of
pressure terms are discretized. Indeed, when velocities and water depth are co-located at the center
of computational cells, numerical noises arise if a centered scheme is used for the computation
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594 A. MOHAMMADIAN

Figure 2. wA/w (left) and wB/w (right). The horizontal coordinates are kh/� and lh/�.

of gravity terms. This is some times called the checker board problem. However, this problem is
eliminated when a flux difference splitting scheme (such as the Roe method) is used, which is the
case in the present paper.

We conclude this section by plotting the ratio of discrete and continuous systems. For �x=
�y=h, the ratios

�A/�= 2−2cos(2kh)

4(kh)2+4(lh)2)
+ 2−2cos(2lh)

4(kh)2+4(lh)2)
(60)

�B/�= 2−2cos(kh)

(kh)2+(lh)2
+ 2−2cos(lh)

(kh)2+(lh)2
(61)

are shown in Figure 2 for various wave numbers. For an ideal numerical scheme, this ratio should
be equal to 1. As it is observed in Figure 2, this ratio is closer to 1 for the method B than the
method A, which also shows the superiority of the method B. A comparison of the two methods
for e.g. l=0 is shown in Figure 3. While both methods perform well for long waves, the method
B leads to more accurate results for short waves than the method A. It is well known (by a discrete
Fourier transform) that the wave length of the shortest resolvable waves is 2h. As it is observed in
Figure 3, the numerical frequency is zero for those waves. Thus, using the method A, the imaginary
part of the numerical frequency (which corresponds to damping) is zero for the shortest resolvable
waves, which means that those waves are not damped by the discretized system contrary to the
behavior of the continuous system. Therefore the method A may lead to numerical oscillations.
This also confirms the results obtained using analysis of stationary modes in (52).

5. NUMERICAL RESULTS

In this section three numerical experiments are performed to verify the previous results. The first
case deals with the model diffusion equation (30). In this test, we show that there are stationary

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:584–599
DOI: 10.1002/fld



NUMERICAL APPROXIMATION OF VISCOUS TERMS 595

Figure 3. The ratio of frequencies wA/w and wB/w versus k�x/� for l=0.

waves that are invisible for the method A. We consider a doubly periodic L×L domain with the
following initial condition:

c= c̄ sin(2�x/L)sin(2�y/L)+c′ cos(�x/�x)cos(�y/�y) (62)

The long wave and perturbation amplitudes are chosen as c̄=1 and c′ =0.05, respectively.
Other employed parameters are L=40m, �=10m2/s and �x=�y=1m. Numerical results of the
methods A and B at time t=15s are shown in Figure 4. The method B has completely filtered the
noise by this time, while the results of the method A are considerably noisy. The simulations were
continued until steady state was obtained by both methods. In order to clearly exhibit the behavior
of the two methods, initial conditions and steady-state solutions at a cross section y=10 are shown
in Figures 5 and 6, respectively. As it is observed in Figure 6, the method B can completely damp
the numerical noise and arrive at the exact solution. However, the method A can only damp the
long wave, but it preserves the shortwave noise, as expected. Such a behavior could potentially
lead to some oscillations in numerical simulations.

We now present an example of such noises in a shallow water model. A typical channel flow
with doubly periodic boundary conditions is considered here. Initial water depth, the total viscosity
� and the domain size are assumed to be 0.2m, 0.005m2/s and 12×12m2, respectively. A coarse
grid of size �x=�y=1m is employed. An initially noisy velocity field of amplitude 0.1m/s is
imposed as shown in Figure 7 to study the performance of the two methods in elimination of
the noise. Since the width-averaged initial momentum of the flow is zero, a stagnant condition is
expected as the steady-state solution (due to the effect of viscosity). Using these initial conditions,
numerical simulations were performed using the methods A and B until steady-state solutions were
obtained. The method B successfully eliminated the initial noise and arrived at a stagnant condition,
while the method A did not change the initial noise, as expected. Indeed, those oscillations in the
velocity profile are ‘invisible’ for the method A as discussed in the previous section.
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Figure 4. Results of the methods A (left) and B (right) at time t=15s.
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Figure 5. Initial condition at y=10m; superposition of a long and a short (noise) wave.

Finally, we consider the flow in a sudden expansion [24] as shown in Figure 8. The channel
width before and after the expansion is 2 and 3m, respectively. The water depth at the downstream
and the mean inflow velocity are, respectively, 1 and 0.5m/s. The eddy viscosity employed by
Denham and Patrick is 0.00685m2/s and the bottom friction is ignored. A random noisy velocity

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:584–599
DOI: 10.1002/fld



NUMERICAL APPROXIMATION OF VISCOUS TERMS 597

x

c

0 10 20 30 40

-1

-0.5

0

0.5

1
Exact Solution

Numerical Solution, Method A

x

c

0 10 20 30 40

-1

-0.5

0

0.5

1
Exact Solution
Numerical Solution, Method B

Figure 6. Steady-state solutions of the methods A (left) and B (right).

Figure 7. Initial velocity field (and steady-state solution of the method A).

field was considered as initial condition. Numerical simulation was continued until a steady-state
solution was achieved. The results of the method B using a 300×100 is shown in Figure 8 where
the u-component of the velocity field is compared with measured data by Denham and Patrick
[24] at different sections. The method A is also able to represent roughly the same flow field
at the steady state. However, it takes much longer for the method A to eliminate initial noise
compared with the method B, which is again due to the numerical inaccuracy of the method A in
the simulation of short waves.
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Figure 8. Flow in a sudden expansion using the method B.

6. CONCLUSION

Two numerical schemes were studied for the discretization of the viscous terms of the shallow water
equations using structured grids. A Fourier analysis was performed to examine the performance
of those schemes for model equations. Detailed examination of truncation errors and frequency
showed that the method A may lead to spurious oscillations and large errors for short waves
although it may need less computational effort. This is because the smallest resolvable waves of
wavelength 2�x are not damped by this scheme. The method B is free of those computational modes
and gives more accurate results than the method A. The results are also confirmed numerically in
idealized test cases.
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